Unsupervised deep homography with multi‐scale global attention

نویسندگان

چکیده

Homography estimation serves an important role in many computer vision tasks. Depending heavily on hand-craft feature quality, traditional methods degenerate sharply scenes with low texture. Existing deep homography can handle the low-texture problem but are not robust for overlap rates and/or illumination changes. This paper proposes a novel unsupervised method that simultaneously such and change. Specifically, powerful module, named global transformer contextual encoder (GTCE) is first designed, together correlation to effectively aggregate information reduce matching ambiguity between maps. Moreover, hybrid photo-perceptual loss proposed. The proposed function considers alignment both pixel level perceptual thus helping this network be more adaptive various scenes, including normal cases change cases. results of extensive experiments synthetic real-world datasets demonstrate superiority over current state-of-the-art solutions especially challenging rates, repetitive patterns

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Image Homography Estimation

We present a deep convolutional neural network for estimating the relative homography between a pair of images. Our feed-forward network has 10 layers, takes two stacked grayscale images as input, and produces an 8 degree of freedom homography which can be used to map the pixels from the first image to the second. We present two convolutional neural network architectures for HomographyNet: a re...

متن کامل

Unsupervised Multiscale Image Segmentation

We propose a general unsupervised multiscale featurebased approach towards image segmentation. Clusters in the feature space are assumed to be properties of underlying classes, the recovery of which is achieved by the use of the mean shift procedure, a robust non-parametric decomposition method. The subsequent classification procedure consists of Bayesian multiscale processing which models the ...

متن کامل

Unsupervised Deep Video Hashing with Balanced Rotation

Recently, hashing video contents for fast retrieval has received increasing attention due to the enormous growth of online videos. As the extension of image hashing techniques, traditional video hashing methods mainly focus on seeking the appropriate video features but pay little attention to how the video-specific features can be leveraged to achieve optimal binarization. In this paper, an end...

متن کامل

Unsupervised Deep Video Hashing with Balanced Rotation

Recently, hashing video contents for fast retrieval has received increasing attention due to the enormous growth of online videos. As the extension of image hashing techniques, traditional video hashing methods mainly focus on seeking the appropriate video features but pay little attention to how the video-specific features can be leveraged to achieve optimal binarization. In this paper, an end...

متن کامل

Unsupervised Semantic Deep Hashing

In recent years, deep hashing methods have been proved to be efficient since it employs convolutional neural network to learn features and hashing codes simultaneously. However, these methods are mostly supervised. In real-world application, it is a time-consuming and overloaded task for annotating a large number of images. In this paper, we propose a novel unsupervised deep hashing method for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Image Processing

سال: 2023

ISSN: ['1751-9659', '1751-9667']

DOI: https://doi.org/10.1049/ipr2.12842